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a b s t r a c t

The mutual influences caused by dynamic couplings in large-scale systems increase the difficulty
in the design and analysis of distributed model predictive control (DMPC), and require information
exchange among subsystems which calls for a scheduling strategy to save communication resources
in communication-limited environments. To circumvent the two problems, we design a rolling self-
triggered DMPC strategy for large-scale dynamically coupled systems with state and control input
constraints. First, the optimal control problem where the cost is subject to the coupled dynamic and
the constraints are subject to the uncoupled counterpart is proposed, forming the dual-model DMPC
that is simple in design and analysis but yields good control performance. Second, the information
exchange only occurs at some specified triggering instants determined by a rolling self-triggered
mechanism, saving communication resources more significantly. The effectiveness of the designed
strategy is verified by numerical simulations.

© 2023 Published by Elsevier Ltd.
1. Introduction

Many practical systems, such as hydropower plants (Han-
andlu & Goyal, 2008), urban traffic (Eini & Abdelwahed, 2019),
nd supply chains (Fu, Zhang, Dutta, & Chen, 2019), are large-
cale systems and can be formulated by nonlinear dynamics
onsisting of several dynamically coupled subsystems. For such
arge-scale systems, it is often impossible to implement a cen-
ralized control strategy. Even if such a centralized control strat-
gy can be implemented, the resultant high computational com-
lexity renders it impractical (Antonelli, 2013). Therefore, for
uch large-scale systems, a distributed counterpart is often em-
loyed because it reduces computational complexity by distribut-
ng decisions based on all subsystems (Dunbar, 2007). Moreover,
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constraints, i.e., physical limits, system safety, and desired per-
formance, often exist in practical systems. In this context, the de-
sired control strategy should have a distributed control structure
and can handle constraints.

Distributed model predictive control (DMPC), which can han-
dle constraints, has found wide applications in large-scale cou-
pled systems, see, for example, Alessio, Barcelli, and Bemporad
(2011), Dunbar (2007), Hans, Braun, Raisch, Grüne, and Reincke-
Collon (2018), Jia and Krogh (2002), Liu, Abbas, and Velni (2018),
Liu, Shi, and Constantinescu (2014), Ma, Liu, Zhang, and Xia
(2020), Magni and Scattolini (2006) and Shalmani, Rahmani, and
Bigdeli (2020). Studies can be classified into two categories ac-
cording to how they deal with mutual influences between sub-
systems caused by dynamic couplings.

In the first category, coupling terms are treated as external
disturbances (Alessio et al., 2011; Jia & Krogh, 2002; Liu et al.,
2014; Magni & Scattolini, 2006). For example, the works in Alessio
et al. (2011), Liu et al. (2014) and Magni and Scattolini (2006)
ignore mutual influences in the predictive model of each subsys-
tem, and the analysis is conducted by using the upper bound of
mutual influences. While in Jia and Krogh (2002), mutual influ-
ences are viewed as the disturbances in the predictive model, and
a min–max feedback DMPC strategy is investigated. In general,
the design and analysis methods of the DMPC strategy in this
category are simple, as they can be borrowed from those in

conventional centralized MPC for perturbed systems. However,
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he predictive model in the optimal control problem (OCP) is
naccurate, resulting in poor control performance (Ma, Liu, Zhang,
Xia, 2020; Shalmani et al., 2020).
In the second category, the coupling terms in each subsystem,

hich are predicted by using the information transmitted from
ther subsystems via communication networks, are exploited in
he predictive model. In this context, many different DMPC strate-
ies for large-scale coupled systems are investigated, see, e.g., the
obust non-iterative DMPC strategy in Ma, Liu, Zhang, and Xia
2020), the iterative Nash-based robust DMPC strategy in Shal-
ani et al. (2020), and the distributed receding horizon control
trategy in Dunbar (2007). It is noteworthy that the utilization of
he information from other subsystems in this category helps to
mprove the prediction precision, thereby obtaining better control
erformance. Nevertheless, the coupling terms in the predictive
odel complicate the analysis of the feasibility of the OCP and

he stability of the overall systems. To be specific, to guarantee
easibility and stability, some extra constraints (Dunbar, 2007;
a, Liu, Zhang, & Xia, 2020), e.g., consistency constraint (Dun-
ar, 2007), and some auxiliary parameters that should satisfy
tringent equality and inequality conditions, are added in the
CP, which increases the design complexity. Moreover, the re-
uired periodic information exchange among subsystems occu-
ies communication resources, which may be not affordable in
ommunication-limited environments.
To save communication resources, a promising approach is

o incorporate DMPC with an event- or self-triggered mecha-
ism (Berkel & Liu, 2018; Eqtami, Heshmati-Alamdari, Dimarog-
nas, & Kyriakopoulos, 2013; Hashimoto, Adachi, & Dimarogonas,
014; Kang, Wang, Li, Xu, & Zhao, 2022; Liu, Li, Shi, & Xu, 2020;
a, Liu, Zhang, Liu, & Xia, 2020; Zhou, Li, Xi, & Gao, 2022). In this
ay, the OCP is solved and the information among subsystems

s exchanged only when some prescribed conditions are met.
n event-triggered DMPC, states are continuously sampled to
heck whether the event is triggered. Related works on event-
riggered DMPC for coupled systems can be found in Berkel
nd Liu (2018), Kang et al. (2022), Liu et al. (2020), Ma, Liu,
hang, Liu, and Xia (2020) and Zhou et al. (2022). For coupled
inear systems, event-triggered DMPC with a fixed prediction
orizon (Berkel & Liu, 2018; Zhou et al., 2022), and an event-
riggered DMPC scheme with an adaptive prediction horizon (Ma,
iu, Zhang, Liu, & Xia, 2020) are proposed. For coupled nonlin-
ar systems, a novel distributed event-triggered strategy and a
ompound event-triggered DMPC strategy are developed in Kang
t al. (2022) and Liu et al. (2020), respectively. To overcome the
rawback of continuous sampling in event-triggered DMPC, self-
riggered DMPC is investigated (Eqtami et al., 2013; Hashimoto
t al., 2014), where the next triggering instant is precomputed
ased on the subsystem model as well as the latest predictive
ontrol input and/or state information. However, the estimation
f future system behavior is susceptible to disturbances, leading
o more conservative triggering results compared with event-
riggered DMPC. Furthermore, studies on self-triggered DMPC for
oupled systems have not been reported due to the difficulty in
valuating the variation of the mutual influences between two
onsecutive triggering instants.
In this paper, our task is to design an efficient self-triggered

MPC strategy for large-scale coupled nonlinear systems. In light
f the above discussion, this task faces two challenges.

(a) How to obtain a DMPC strategy that is easy-to-design and
has good control performance? Note that the DMPC strategy
in the first category is simple in design but yields poor
performance, while the one in the second category is just
the opposite. Therefore, the existing DMPC strategies in both

categories fail to solve this challenge.

2

(b) How to design an efficient self-triggered mechanism that
bypasses the evaluation of the variation induced by mu-
tual influences? Note that incorporating the conventional
self-triggered mechanism, see, e.g., Eqtami et al. (2013),
Hashimoto et al. (2014) and Sun, Dai, Liu, Dimarogonas,
and Xia (2019), with the DMPC in the first category is
fairly conservative as only the worst-case mutual influences
are considered. Moreover, combining the conventional self-
triggered mechanism with the DMPC in the second category
is also not the ideal candidate as obtaining an accurate
prediction of this variation is an intractable task.

In this paper, we propose a novel OCP, which inherits both
the advantages from the above two categories, to solve the first
challenge, and improve the self-triggered mechanism which is
first proposed in our conference paper (Wang, Li, Kang, & Zhao,
2021), to handle the second challenge.

The main novelties and contributions are as follows.

• A dual-model OCP is designed, which is simple in design
and yields desirable control performance. Specifically, this
OCP consists of both the coupled model and the decoupled
model, where the coupled model is employed to improve
control performance and the decoupled model facilitates the
design of the constraints and parameters to ensure recursive
feasibility and stability.

• A rolling self-triggered mechanism is developed, which saves
communication resources more efficiently. In this mecha-
nism, the states may be sampled several times between two
consecutive triggering instants and the sampling instants
are determined by using the conventional self-triggered
mechanism in a rolling manner. Based on the sampled
states, the actual state predictive error can be obtained, and
the accurate evaluation of the mutual influences is no longer
a strict requirement.

• Sufficient conditions for recursive feasibility and stability are
established, which are much simpler and easier to be satis-
fied than those obtained by the DMPC strategy in the afore-
mentioned second category. This benefit is also a positive
effect induced by the dual-model OCP.

Notations. Let Z and N denote the nonnegative integers and
ositive integers. The symbols R and Rn represent real numbers
et and n-dimensional real space. For a symmetric matrix P ,
≻ 0 means that P is a positive matrix. For a vector x ∈ Rn,

T , ∥x∥ =
√
xT x, and ∥x∥P with P ≻ 0 denote its transpose,

Euclidean norm and P-weighted norm, respectively. For matrix
P ∈ Rn×n, its maximum and minimum eigenvalue are λmax(P)
and λmin(P), respectively. Given two nonempty sets X and Y,
X ⊕ Y ≜ {x + y|x ∈ X, y ∈ Y} represents the Minkowski addition
set, and X⊖Y ≜ {x : x+y ∈ X,∀y ∈ Y} represents the Pontryagin
difference set. Diag{...} denotes a block-diagonal matrix.

2. Problem formulation and preliminaries

2.1. Problem formulation

Consider a large-scale system consisting of M nonlinear in-
terconnected subsystems, which are coupled through states. The
dynamical coupling between subsystems is described by a di-
rected graph G = (M, E), where M = {1, . . . ,M} is the set of
nodes (subsystems) and E ⊂ M × M is the set of edges. The
dynamics of ith subsystem is given by

ẋi(t) = fi(xi(t), ui(t)) +

∑
u

gij(xj(t)) + wi(t), t ≥ 0, (1)

j∈Ni
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here i ∈ M, xi(t) ∈ Rni and ui(t) ∈ Rmi are state and control
nput respectively, and they are constrained by

i(t) ∈ Xi, ui(t) ∈ Ui. (2)

The sets Xi and Ui are compact and contain the origin in their
nterior. The function gij describes the mutual influences between
ubsystems. wi(k) ∈ Wi = {wi ∈ Rni : ∥wi∥Pi ≤ ξi, ξi > 0}
s the disturbance, and Pi is the positive definite matrix. The set
N u

i represents the upstream neighbors of subsystem i, i.e., the
omponents of subsystem j’s state appear in the dynamics of
subsystem i for some j ∈ M \ {i}. N d

i denotes the downstream
neighbors of subsystem i. Note that j ∈ N u

i if and only if i ∈ N d
j ,

for all i, j ∈ M.
The dynamics of the overall system is

ẋ(t) = F (x(t), u(t)) + w(t)

= f (x(t), u(t)) + g(x(t)) + w(t), (3)

where x = [xT1, . . . , x
T
M ]

T
∈ X ⊆ Rn, X = X1 × · · · × XM , and u =

[uT
1, . . . , u

T
M ]

T
∈ U ⊆ Rm, U = U1×· · ·×UM ,w = [wT

1 , . . . , w
T
M ]

T
∈

W ⊆ Rn, W = W1 × · · · × WM , and n =
∑

i∈M ni, m =
∑

i∈M mi.
Furthermore, f (x, u) = [f1(x1, u1)T , . . . , fM (xM , uM )T ]T and g(x) =

[
∑

j∈N u
1
g1j(xj)T , . . . ,

∑
j∈N u

M
gMj(xj)T ]T .

Assumption 1 (Dunbar, 2007). The function fi and gij are twice
continuous differentiable and satisfy fi(0, 0) = 0, gij(0) = 0.
Furthermore, the system (1) has a unique, absolutely continu-
ous solution for any initial condition xi(0), any piecewise right-
continuous xj : [0,∞) → Xj, j ∈ N u

i , and any piecewise
right-continuous ui : [0,∞) → Ui.

Assumption 2 (Liu et al., 2020). The function fi is Lipschitz con-
tinuous in its argument, i.e., there exists a constant Lfi depending
on the positive definite matrix Pi such that

∥fi(υ, u) − fi(ς, u)∥Pi ≤ Lfi∥υ − ς∥Pi (4)

for all (υ, ς, u) ∈ Xi × Xi × Ui.

The main objective of this paper is to design a self-triggered
DMPC strategy to stabilize the overall system in (3). This strategy
has two advantages: (i) the proposed strategy is simple in design
and can achieve good control performance; (ii) the triggering
frequency can be significantly reduced to save communication
resources.

2.2. Preliminaries

This section gives some preliminaries, which will be used in
the following design and analysis.

First, we introduce some dynamics to facilitate the design of
the terminal set and local state feedback law, which will be used
in feasibility and stability analysis. Based on (1), the nominal
decoupled dynamics of (1) is expressed as

ẋi(t) = fi(xi(t), ui(t)). (5)

Similarly, the nominal dynamics of (3) is

ẋ(t) = F (x(t), u(t)). (6)

Consider the linearized system of (1) and (3) around the origin.
The linearization of (1) around the origin is denoted as

ẋi(t) = Aiixi(t) + Biui(t) +

∑
j∈N u

i

Aijxj(t) + wi(t), (7)

where Aii = ∂ fi/∂xi(0, 0), Aij = ∂gij/∂xj(0) for j ∈ N u
i , and

B = ∂ f /∂u (0, 0).
i i i i

3

The linearization of (3) around the origin is denoted as

ẋ(t) = Ax(t) + Bu(t) + w(t), (8)

where A = ∂F/∂x(0, 0), B = ∂ f /∂u(0, 0).
Based on the above dynamics, the following two lemmas are

given. Lemma 1 shows that there exists a positive invariant set for
nominal dynamics in (5) with the local state feedback law. Before
giving Lemma 1, an assumption is given.

Assumption 3. For each subsystem i,(i ∈ M), there exists a
decoupled state feedback law Ki such that Asi = Aii + BiKi and
Ao = A + BK are both Hurwitz, where K = Diag(K1, . . . , KM ).

Lemma 1 (Li, Yan, Shi, & Wang, 2015). For the nominal decoupled
subsystem in (5) with Assumption 3 and any given symmetric ma-
trices Qi > 0, Ri > 0, there exist a constant ϵi > 0, a matrix
Pi, and a state feedback law ui(t) = Kixi(t) ∈ Ui such that: (i)
The set φi(ϵi) = {xi(t) ∈ Rni : Vfi (xi(t)) ≤ ϵ2i } is a positive
invariant set for subsystem in (5) with ui(t) = Kixi(t) ∈ Ui;
(ii) V̇fi (x(t))|ẋi(t)=fi(xi(t),Kixi(t)) ≤ −∥x(t)∥2

Q̄i
, ∀x(t) ∈ φi(ϵi). Here,

Vfi (x(t)) = ∥x(t)∥2
Pi
, Q̄i = Qi + K T

i RiKi, and Pi is the solution of the
Lyapunov function PiAsi + AT

siPi = −Q̄i.

Denote Q = Diag{Q1, . . . ,QM}, P = Diag{P1, . . . , PM}, Q̄ =

Diag{Q̄1, . . . , Q̄M}, and As = Diag{As1, . . . , AsM}, where Qi, Pi, Q̄i
and Asi are defined in Lemma 1 and Assumption 3, respectively.

Assumption 4 (Dunbar, 2007). The inequality AT
oP + PAo − (AT

s P +

PAs) ≤ 1/2Q̄ holds.

Based on Assumption 4, the positive invariant set φ(ε) for
nominal system (6) with the state feedback law K can be estab-
lished, which is elaborated in the following Lemma 2.

Lemma 2. For the overall system in (3) with Assumption 1, 3 and
4, there exist a constant ε > 0 and a state feedback law u(x) =

Kx(t) ∈ U such that the set φ(ε) = {x(t) ∈ Rn
: Vf (x(t)) ≤ ε2} is a

positive invariant set for system ẋ(t) = F (x(t), Kx(t)).

Proof. The proof follows the same line of Dunbar (2007) and Liu
et al. (2020), we give a concise proof here.

According to Assumption 4, the derivation of Vf (x(t)) can be
computed as follows

V̇f (x(t))|ẋ(t)=F (x(t),Kx(t))

=x(t)T (AT
oP + PAo)x(t) + 2x(t)TPψ(x(t))

≤ − ∥x(t)∥2
Q̄ (

1
2

−
2∥ψ(x(t))∥P

λmin(P−1/2Q̄ P−1/2)∥x(t)∥P
), (9)

where ψ(x(t)) = F (x(t), Kx(t)) − Aox(t). Since
∥ψ(x(t))∥P

∥x(t)∥P
→ 0 as

∥x(t)∥P → 0. There exist constant ε, and 0 < β < 1/2 such
that ∥ψ(x(t))∥P

∥x(t)∥P
≤ (1−2β)λmin(P−1/2Q̄ P−1/2)/4 such that V̇f (x(t)) ≤

β∥x(t)∥2
Q̄
holds for all x(t) ∈ φ(ε). This completes the proof.

. Rolling self-triggered DMPC

.1. Dual-model OCP

Under the self-triggered strategy, information sampling and
ontrol updating occur asynchronously between different subsys-
ems. For each subsystem i, denote t ri , r ∈ N as its rth triggering
nstant. To obtain an accurate prediction of the state evolution of
ubsystem i, an ideal way is to exploit the actual state information
f its upstream neighbors j ∈ N u

i . However, the actual state infor-
ation of its upstream neighbors is not available for subsystem

due to the asynchronous triggering manner. Therefore, at each
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riggering instant t ri , each subsystem i constructs the assumed
tate information based on the latest information received from
ts neighbors, denoted by xaj , j ∈ N u

i . Similarly, subsystem i
ransmits its predictive state xai to its downstream neighbors j, j ∈
d
i .
To facilitate the OCP definition, we summarize the notation

f different types of state and control input trajectories. For ease
f representation, let ·(t; t ri ) be a variable at time t , where t ∈

[t ri , t
r
i + T ].

• ũi(t; t ri ) and x̃i(t; t ri ) are the predicted control input and state
trajectory of subsystem i.

• ũ∗

i (t; t
r
i ) and x̃∗

i (t; t
r
i ) are the optimal control input and state

trajectory of subsystem i obtained by solving the following
OCP.

• ūi(t; t ri ) is a feasible control trajectory candidate and will
be constructed in the following part. x̄i(t; t ri ) is the feasible
state with respect to ūi(t; t ri ).

• x̂i(t; t ri ) is the nominal state.
• xai (t; t

r
i ) is the assumed state of subsystem i and will be

constructed in the following part.

Inspired by Aswani, Gonzalez, Sastry, and Tomlin (2013), the
local OCP subsystem i with dual-model is defined by

ũ∗

i (t; t
r
i ) = argmin J̃i(x̃i(t; t ri ), ũi(t; t ri ))

s.t. ˙̃xi(t; t ri ) = fi(x̃i(t; t ri ), ũi(t; t ri )) +

∑
j∈N u

i

gij(xaj (t; t
r
i )) (10a)

˙̂xi(t; t ri ) = fi(x̂i(t; t ri ), ũi(t; t ri )) (10b)

x̂i(t ri ; t
r
i ) = x̃i(t ri ; t

r
i ) = x(t ri ) (10c)

x̂i(t; t ri ) ∈ Xi ⊖ Bi(t − t ri ) (10d)

x̂i(t ri + T ; t ri ) ∈ φi(αiεi) (10e)

ũi(t; t ri ) ∈ Ui (10f)

Hi(x̂i(t; t ri ), ũi(t; t ri )) ≤ Hi(x̄i(t; t ri ), ūi(t; t ri )) (10g)

where t ∈ [t ri , t
r
i + T ], T is the prediction horizon. The tightened

set Bi(t − t ri ), which is designed to satisfy the actual state con-
straint, will be defined latter. φi(αiεi) = {x ∈ Rni : ∥x∥Pi ≤ αiεi}

denotes the terminal set, where εi = min{ϵi, ε/
√
M}.

The coupled dynamics in (10a) is employed to guarantee a
ood control performance. The nominal dynamics in (10b) is used
o guarantee the recursive feasibility. The initial state of (10a)
nd (10b) is regarded in (10c). The tightened constraint in (10d)
s designed to satisfy the recursive feasibility and actual state
onstraint. (10e) is the terminal constraint. The last constraint in
10g) is imposed to ensure the stability of each subsystem.

• The assumed state xaj (t; t
r
i ), t ∈ [t ri , t

r
i + T ], j ∈ N u

i is
constructed as

xaj (t; t
r
i )

=

{
x̃∗

j (t; ηj(t
r
i )), t ∈ [t ri , ηj(t

r
i ) + T ]

Asjxaj (t; t
r
i ), t ∈ [ηj(t ri ) + T , t ri + T ],

(11)

where ηj(t ri ) ≜ max{l ∈ N : t lj ≤ t ri }.
• The tightened set Bi(t − t ri ) is defined as

Bi(t − t ri ) := {x ∈ Rni : ∥x∥Pi

≤
ξi + θij

Lfi
(eLfi (t−tri ) − 1)}, (12)

where θ = sup ∥g (x )∥ .
ij xj∈Xj ij j Pi

4

• The cost function J̃i(x̃i(t; t ri ), ũi(t; t ri )) is allowed to be any
convex function, such as a quadratic function

J̃i(x̃i(t; t ri ), ũi(t; t ri ))

=

∫ tri +T

tri

(∥x̃i(s; t ri )∥Q̃i
+ ∥ũi(s; t ri )∥R̃i

)ds

+ ∥x̂i(t ri + T ; t ri )∥P̃i
(13)

with Q̃i ≻ 0, R̃i ≻ 0, and P̃i ≻ 0, or a linear function
J̃i(x̃i(t), ũi(t)) =

∫ T
0 αxi(s) + βũi(s)ds with the weighting

vectors α and β . In practice, the choice of J̃i is based on
practical performance requirements.

• The function Hi(x̂i(t; t ri ), ũi(t; t ri )) is defined as

Hi(x̂i(t; t ri ), ũi(t; t ri ))

=

∫ tri +T

tri

(∥x̂i(s; t ri )∥
2
Qi

+ ∥ũi(s; t ri )∥
2
Ri )ds

+ ∥x̂i(t ri + T ; t ri )∥
2
Pi , (14)

where Qi ≻ 0, Ri ≻ 0, and Pi ≻ 0. In addition, Pi is the
solution of the Lyapunov equation AT

siPi + PiAsi = −Q̄i.
• The feasible control input candidate ūi(t; t ri ), r > 0 is con-

structed as

ūi(t; t ri ) =

{
ũ∗(t; t r−1

i ), t ∈ [t ri , t
r−1
i + T ],

Kix̄(t; t ri ), t ∈ [t r−1
i + T , t ri + T ],

(15)

where the feasible state trajectory is subject to nominal
system dynamics (5) with x̄i(t; t ri ) = xi(t ri ).

emark 1. The designed dual-model OCP in (10) is distinct from
he conventional ones in the following three noteworthy aspects.

(a) Compared with the conventional OCPs in Alessio et al.
(2011), Jia and Krogh (2002), Liu et al. (2014), Ma, Liu,
Zhang, and Xia (2020), Magni and Scattolini (2006) and
Shalmani et al. (2020) that only employ a single predic-
tive model (the nominal dynamics in (10b) or the coupled
dynamics in (10a)), the most significant difference is that
the two predictive models are both considered. Such a
dual-model OCP enables us to separate the performance
guarantee and constraint satisfaction. That is, the perfor-
mance is guaranteed by finding the control inputs such that
the cost function J̃i subject to the coupled dynamics (10a)
is minimized, and the constraints subject to the nominal
dynamics (10b) are checked under the same control inputs.
In this way, the control parameters design is simple and the
control performance is relatively good.

(b) Compared with previous works on coupled systems, such
as Dunbar (2007), Liu et al. (2020) and Zhou et al. (2022),
some constraints, in which some parameters require to be
designed to satisfy some stringent conditions, are avoided
in the OCP (10). One may note that a stability constraint
is introduced, however, it can be trivially satisfied without
any extra conditions, which is shown in Section 4.2. In this
way, the DMPC algorithm is much simpler in design.

(c) The stability constraint (10g) in the OCP is added to re-
duce the conservativeness in stability analysis. Indeed, the
optimal cost subject to the coupled dynamics serves as a
Lyapunov function in many works (Dunbar, 2007; Mirzaei
& Ramezani, 2021). However, due to the coupling influ-
ences in the predicted model, the analysis of the difference
in the optimal cost J̃i between two successive updates is
quite conservative, leading to conservative sufficient con-

ditions for ensuring stability. Therefore, we construct the
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function Hi as the Lyapunov function candidate and im-
pose the stability constraint (10g) on it to solve the above
challenge.

Remark 2.

(a) The stability and performance can be decoupled by the
dual-model strategy. As a result, stability no longer de-
pends on the cost function J̃i. Therefore, any arbitrary
quadratic function is allowed. In practice, the choice of
J̃i is based on practical performance requirements. For
example, in simplified adaptive cruise control (Lin, Görges,
& Weißmann, 2017), it is chosen as J̃i =

∫ T
0 ai(s)2ds for

driving comfort and energy efficiency where ai = ui is
the acceleration, and in the control of room temperature
in summer scenario (Dai, Qiang, Sun, Zhou, & Xia, 2020),
it is chosen as J̃i =

∫ T
0 α|x̃i(s) − xi,d| + β|ũi(s)|ds for the

degree of comfort to the indoor temperature and the cost
of power.

(b) The function Hi is proposed to ensure the stability, the
choice of which is restricted. Once the weighting matrices
Qi, Ri are given, Q̄i = Qi + KiRiKi is determined, and then
Pi can be obtained by solving the Lyapunov equation (Aii +

BiKi)TPi + Pi(Aii + BiKi) = −Q̄i.

3.2. Rolling self-triggered mechanism

The actual state trajectory (1) and the nominal one (5) of sub-
system i are both generated by employing control input ũ∗

i (t; t
r
i ).

However, the ignorance of coupling terms and external distur-
bance in dynamics (5) causes state error between x(t) and x̂i(t; t ri ).
The following lemma formulates this deviation, which is a prereq-
uisite for the design of the self-triggering mechanism.

Lemma 3. For each subsystem i, if the actual system (1) and the
nominal one (5) are both controlled by the control input ũ∗

i (t; t
r
i ),

hen actual state predictive error ∥xi(t) − x̂i(t; t ri )∥Pi is bounded by

∥xi(t) − x̂i(t; t ri )∥Pi ≤
ξi + θij

Lfi
(eLfi (t−tri ) − 1), (16)

where t ∈ [t ri , t
r
i + T ].

Proof. The proof can be easily completed by using Gronwall–
Bellman inequality, and thus omitted.

Considering the recursive feasibility of the OCP, it is required
that the actual state trajectory does not deviate far away from the
nominal state trajectory. To that end, conventional self-triggered
mechanisms, such as Eqtami et al. (2013), Hashimoto et al. (2014)
and Sun et al. (2019), use the estimated state predictive error
and a triggering threshold to design the triggering condition as
follows
ξi + θij

Lfi
(eLfi (t−tri ) − 1) = (εi − αiεi)eLfi (t−tri −T )

=: ϕ(t),
(17)

where ϕ(t) is a time-varying triggering threshold that is designed
to guarantee the recursive feasibility. The design of ϕ(t) can be
seen in Section 4.2.

Solving (17) yields the triggering instants as follows

t r+1
i := inf{t : t > t ri , (17)}. (18)

Using the upper bounds of coupling terms and disturbances
to evaluate actual state predictive error leads to a conservative
result since the actual coupling terms and disturbances cannot
5

Fig. 1. Rolling self-triggered mechanism. (a) At triggering instant t ri , the 1st
sampling instant t̄1i is determined by (21). (b) At t̄1i , the current state xi(t̄1i ) is
easured and the actual value of ∥xi(t̄1i ) − x̂i(t̄1i ; t ri )∥Pi is obtained. (c) χ (t − t̄1i )

s calculated by (19), and the next sampling instant t̄2i is determined by (21).
d) The process in (b) and (c) is performed repeatedly until the stop condition
n (22) is satisfied, and the next triggering instant t r+1

i is determined by (23).

e obtained. As a result, the triggering determined by (18) is
requent.

To overcome this drawback, we add some sampling of the
tates in a rolling manner to obtain a less conservative evaluation
f the actual state predictive error. To be specific, we first define t̄si
s the sth sampling instant after t ri , i.e., t̄

s
i ≥ t ri , t̄

0
i = t ri , s ∈ Z. At

ach sampling instant t̄si , the current state xi(t̄si ) is measured and
he actual value of ∥xi(t̄si )− x̂i(t̄si ; t

r
i )∥Pi is calculated. Based on this

ctual value, a more accurate evaluation of ∥xi(t)− x̂i(t; t ri )∥Pi , t >
¯si can be obtained, and based on which, the next sampling in-
tant t̄s+1

i is then determined by the conventional self-triggered
echanism. The whole process is illustrated in Fig. 1.
In the following three parts, we explicitly formulate the pro-

osed rolling self-triggered mechanism.
Firstly, we evaluate ∥xi(t) − x̂i(t; t ri )∥Pi , t > t̄si by using the

ctual value of ∥xi(t̄si ) − x̂i(t̄si ; t
r
i )∥Pi in Lemma 4.

emma 4. For each subsystem i, the predictive error between x(t)
nd x̂i(t; t ri ) is bounded by

xi(t) − x̂i(t; t ri )∥Pi ≤ ∥xi(t̄si ) − x̂i(t̄si ; t
r
i )∥Pie

Lfi (t−t̄si )

+
ξi + θij

Lfi
(eLfi (t−t̄si ) − 1)

:= χ (t − t̄si ), (19)

here t ∈ [t ri , t
r
i + T ], t̄si ∈ [t ri , t], and χ (t − t̄si ) represents the

valuation of the actual state predictive error.

roof. According the actual system dynamics (1) and the nominal
ne (5), we obtain

∥xi(t) − x̂i(t; t ri )∥Pi

∥xi(t̄si ) +

∫ s

t̄si

(fi(xi(s), ũ∗

i (s; t
r
i )) +

∑
j∈N u

i

gij(xj(s))

+ wi(s))ds − x̂i(t̄si ; t
r
i ) −

∫ s

t̄si

fi(x̂i(s; t ri ), ũ
∗

i (s; t
r
i ))ds∥Pi

≤∥x (t̄s) − x̂ (t̄s; t r )∥ + (θ + ξ )(t − t̄s)
i i i i i Pi ij i i
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∫ s

t̄si

Lfi∥xi(s) − x̂i(s; t ri )∥ds

≤∥xi(t̄si ) − x̂i(t̄si ; t
r
i )∥Pie

Lfi (t−t̄si ) +
ξi + θij

Lfi
(eLfi (t−t̄si ) − 1),

where the last inequality uses the Gronwall–Bellman inequality.

Secondly, we determine the sampling instant t̄si by using the
conventional self-triggered mechanism. Specifically, the update
condition is designed as follows

∥xi(t̄si ) − x̂i(t̄si ; t
r
i )∥Pie

Lfi (t−t̄si ) +
ξi + θij

Lfi
(eLfi (t−t̄si ) − 1)

= (εi − αiεi)eLfi (t−tri −T )
, t̄0i = t ri . (20)

By virtue of (20), the sampling instant t̄s+1
i , s ∈ Z is deter-

mined by

t̄s+1
i := inf{t : t > t̄si , (20)}. (21)

Thirdly, we establish the stop condition of sampling, which
also determines the next triggering instant t r+1

i . The main idea is
that if two successive sampling instants t̄si and t̄s+1

i are sufficiently
close, the state predictive error ∥xi(t̄si )− x̂i(t̄si ; t

r
i )∥Pi may be close

to the triggering threshold ϕ(t) in (17). Therefore, we simply set
t r+1
i = t̄si . Moreover, the constraint t r+1

i ≤ t ri + T should also be
satisfied. In summary, the stop condition is set by

t̄s+1
i − t̄si < δi or t̄s+1

i − t ri ≥ T , (22)

and the next triggering instant is then determined as follows:

t r+1
i =

{
t̄si , if t̄s+1

i − t̄si < δi,

t ri + T , if t̄s+1
i − t ri ≥ T ,

(23)

where δi is the minimum sampling interval for each subsystem i.
From triggering instant t ri , the sampling process is carried

out with the initial condition t̄0i = t ri until the stop condition
in (22) is satisfied. This sampling process enters the next cycle
starting from t r+1

i . The sampling instant is determined based on
the conventional self-triggered mechanism in a rolling manner,
thus the name of ‘‘rolling self-triggered mechanism’’. Obviously,
the conventional self-triggering mechanism is a special case of
the proposed rolling self-triggered mechanism. Therefore, the
propose one can save communication resources more efficiently.

Algorithm 1 Rolling Self-Triggered DMPC Algorithm

1: At time t = 0, set r = 0, s = 0, t̄si = 0, xaj (t; t
r
i ) = 0,

flag = 1, solve the OCP in (10), and determine the next
sampling instant t̄s+1

i according to (21), go to step 5.
2: At any time t > 0, if x(t) ∈ φ(ε), apply control input Kx(t)

and go to step 2. Otherwise, go to step 3;
3: If t = t ri , set flag = 1, construct the assumed states

xaj (t; t
r
i ), j ∈ N u

i according to (11); solve the OCP in (10) and
transmit x̃∗

i (t; t
r
i ), t ∈ [t ri , t

r
i + T ] to downstream neighbors

j, j ∈ N d
i ; set initial sampling instant t̄0i = t , s = 0;

determine the next sampling instant t̄s+1
i according to (21)

and go to step 5. Otherwise, go to step 4;
4: If t = t̄si , determine the next sampling instant t̄s+1

i
according to (21). Otherwise, go to step 6.

5: Check the stop condition (22). If it is satisfied, determine
the next triggering instant t r+1

i according to (23), and set
r = r + 1, flag = 0. Otherwise, set s = s + 1;

6: If flag = 1, apply the control input ũ∗

i (t; t
r
i ), and go to step

2. Otherwise, apply ũ∗

i (t; t
r−1
i ), and go to step 2.
6

4. Analysis

In this section, the theoretical results are given by the fol-
lowing three theorems. Firstly, Theorem 1 states that the Zeno
behavior is avoided by the designed Algorithm 1. Secondly, the re-
cursive feasibility is analyzed in Theorem 2, followed by stability
analysis in the third one.

4.1. Avoidance of Zeno behavior

Theorem 1 states that there always exists a lower bound of
the triggering interval, which means the designed algorithm is
Zeno-free.

Theorem 1. For the system (1) with Algorithm 1. If
1
Lfi

ln
(1 − αi)εiLfi
ξi + θij

< T (24)

is satisfied, then the minimum triggering interval ∆i, i.e., ∆i ≤

infr∈N{t r+1
i − t ri }, is

i =
1
Lfi

ln
eLfi T

eLfi T −
(1−αi)εiLfi
ξi+θij

. (25)

roof. Observed from (23), one can easily obtain that t r+1
i ≥ t̄1i .

ubstituting t̄si = t̄0i into (20) yields

ξi + θij

Lfi
(eLfi (t−t̄0i ) − 1) = (εi − αiεi)eLfi (t−tri −T )

.

olving the above equation and considering t̄0i = t ri , we can
urther obtain t̄1i − t ri = ∆i. Therefore, t r+1

i − t ri ≥ t̄1i − t ri ,
.e., infr∈N{t r+1

i − t ri } ≥ ∆i holds. This completes the proof.

4.2. Recursive feasibility analysis

The recursive feasibility guarantees that the solution of the
local OCP always exists for each subsystem i, (i ∈ M) at each
triggering instant provided that an initial feasible solution at t0i =

is available. In the following, we first give an initial feasible
ssumption of the local OCP.

ssumption 5 (Ma, Liu, Zhang, & Xia, 2020). The local OCP of
each subsystem i, (i ∈ M) is feasible at initial time and φi(εi) ⊂

Xi ⊖ Bi(T ).

Theorem 2. For system (1) with Assumptions 1–5. If the prediction
horizon is chosen as

T ≤
1
Lfi

ln
(1 − αi)εiLfi

(ξi + θij)(1 − α
4 λmax(Pi)
λmin(Q̄i)

Lfi
i )

, (26)

then OCP in (10) is recursively feasible.

Proof. This proof is conducted by induction principle. Firstly, OCP
is feasible at t0i = 0. Secondly, suppose that OCP is feasible at
t r−1
i , r > 1, i ∈ M. Then, we need to prove that the OCP is
also feasible at t ri . To prove this, we require to show that the
control input candidate ūi(t; t ri ) in (15) and the corresponding
state x̄i(t; t ri ) satisfy constraints (10d)–(10g).

(1) The satisfaction of the tightened constraint (10d), i.e., x̄i(t; t ri )
∈ Xi ⊖Bi(t − t ri ), t ∈ [t ri , t

r
i +T ] : When t ∈ [t r−1

i , t r−1
i +T ], based

on the constructed control input ūi(t; t ri ), we obtain

∥x̄i(t; t ri ) − x̂i(t; t r−1
i )∥Pi

=∥x̄i(t ri ; t
r
i ) +

∫ s

r
fi(x̄i(s; t ri ), ũ

∗

i (s; t
r−1
i ))ds
ti
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− x̂i(t ri ; t
r−1
i ) −

∫ s

tri

fi(x̂i(s; t r−1
i ), ũ∗

i (s; t
r−1
i ))ds∥Pi

≤∥xi(t ri ) − x̂i(t ri ; t
r−1
i )∥Pi

+

∫ s

tri

Lfi∥x̄i(s; t
r
i ) − x̂i(s; t r−1

i )∥Pids

Applying the Gronwall–Bellman inequality yields

∥x̄i(t; t ri ) − x̂i(t; t r−1
i )∥Pi

≤ ∥xi(t ri ) − x̂i(t ri ; t
r−1
i )∥Pie

Lfi (t−tri ). (27)

By virtue of (16), it follows that ∥xi(t ri ) − x̂i(t ri ; t
r−1
i )∥Pi ≤ χ (t ri −

t r−1
i ) =

ξi+θij
Lfi

(eLfi (t
r
i −tr−1

i )
− 1), and then

x̄i(t; t ri ) − x̂i(t; t r−1
i )∥Pi

≤
ξi + θij

Lfi
(eLfi (t−tr−1

i )
− eLfi (t−tri )).

Since x̂i(t; t r−1
i ) ∈ Xi ⊖Bi(t − t r−1

i ), we have x̄i(t; t ri ) ∈ Xi ⊖Bi(t −

t r−1
i ) ⊕

ξi+θij
Lfi

(eLfi (t−tr−1
i )

− eLfi (t−tri )) ⊂ Xi ⊖ Bi(t − t ri ).

When t ∈ [t r−1
i +T , t ri +T ], we will show that x̄i(t; t ri ) ∈ φi(εi),

which implies that x̄i(t; t ri ) ∈ Xi⊖Bi(t−t ri ) holds by Assumption 5.
In view of (16), (20) and (23), it follows that

∥xi(t ri ) − x̂i(t ri ; t
r−1
i )∥Pi

≤∥xi(t̄si ) − x̂i(t̄si ; t
r−1
i )∥Pie

Lfi (t
r
i −t̄si )

+
ξi + θij

Lfi
(eLfi (t

r
i −t̄si ) − 1)

(εi − αiεi)eLfi (t
r
i −tr−1

i −T )
, (28)

here t̄si is the latest sampling instant before t ri .
Substituting (28) into (27), we can also obtain

x̄i(t; t ri ) − x̂i(t; t r−1
i )∥Pi ≤ (εi − αiεi)eLfi (t−tr−1

i −T ) (29)

Therefore, by setting t = t r−1
i + T , it follows ∥x̄i(t r−1

i + T ; t ri ) −

x̂i(t r−1
i + T ; t r−1

i )∥Pi ≤ (εi − αiεi). Using the triangle inequality
yields ∥x̄i(t r−1

i + T ; t ri )∥Pi ≤ εi, that is, x̄i(t r−1
i + T ; t ri ) ∈ φi(εi),

which allows the state feedback control Kixi to be used. According
to Lemma 1, x̄i(t; t ri ), t ∈ [t r−1

i + T , t ri + T ] will remain in φi(εi).
(2) The satisfaction of the terminal constraint (10e), i.e., x̄i(t ri +

T ; t ri ) ∈ φi(αiεi): Since x̄i(t r−1
i + T ; t ri ) ∈ φi(εi), Lemma 1 is valid,

one has V̇fi (∥x̄i(t; t
r
i )∥Pi ) ≤ −∥x̄i(t; t ri )∥

2
Q̄i

for t ∈ [t r−1
i + T , t ri +

T ]. Applying the comparison principle, we further obtain that

∥x̄i(t; t ri )∥
2
Pi

≤ ∥x̄i(t r−1
i + T ; t ri )∥

2
Pi
e−

λmin(Q̄i)
2λmax(Pi)

(t−tr−1
i −T ). Therefore,

setting t = t ri + T yields ∥x̄i(t ri + T ; t ri )∥
2
Pi

≤ ε2i e
−
λmin(Q̄i)
2λmax(Pi)

(tri −tr−1
i ).

y using t ri − t r−1
i ≥ ∆i, (25) and (26), we finally obtain ∥x̄i(t ri +

; t ri )∥
2
Pi

≤ α2
i ε

2
i .

(3) The satisfaction of the control constraint (10f), i.e., ūi(t; t ri ) ∈

i, t ∈ [t ri , t
r
i + T ]: From the construction of ūi(t; t ri ) in (15), one

btains ūi(t; t ri ) = ũ∗(t; t r−1
i ) ∈ Ui, t ∈ [t r−1

i , t r−1
i + T ]. In view

of x̄i(t r−1
i + T ; t ri ) ∈ φi(εi) and Lemma 1, ūi(t; t ri ) = Kix̃(t; t ri ) ∈

Ui, t ∈ [t r−1
i + T , t ri + T ].

(4) The satisfaction of the stability constraint (10g), i.e., Hi(x̄i(t;
t ri ), ūi(t; t ri )) ≤ Hi(x̄i(t; t ri ), ūi(t; t ri )): This holds naturally. This
completes the proof.

From the above analysis, we can see that the recursive feasi-
bility can be guaranteed if only one sufficient condition (26) is
needed. Compared with previous work, the proposed dual-model
strategy is much simpler in design.

Remark 3. To guarantee the recursive feasibility of the OCP,
initial feasibility is needed. To this end, many works assume that
 a

7

there exists an assumed state trajectory xaj (t; 0), j ∈ N u
i such

that the solution of the OCP exists at the initial time because the
feasibility depends on the coupled model, see, e.g., Dunbar (2007),
Kang et al. (2022) and Liu et al. (2020). In this regard, the initial
assumed state trajectory xaj (t; 0), j ∈ N u

i requires to be chosen
carefully to ensure that the solution of the OCP exists. However,
such a requirement is avoided in the proposed strategy because
the feasibility depends on the decoupled model.

Remark 4. According to (24) and (26), the prediction horizon T
can be determined once the control parameters αi and εi are se-
lected. In practical implementation, we want a larger T to ensure
the feasibility of the OCP. However, it can be observed from (20)
that a larger T gives rise to a smaller triggering threshold, which
implies that triggering is more frequent. Therefore, we should
choose T carefully.

4.3. Stability analysis

This part establishes the sufficient condition for the stability
of the overall system.

Theorem 3. For the overall system (3) with Assumptions 1–5, if
the following two conditions

LQiλmax(
√
Qi)

Lfiλmin(
√
Pi)

(εi − αiεi)(1 − eLfi (∆i−T ))

+ (1 − α2
i )ε

2
i <

λmin(Qi)
λmax(Pi)

∆i(αiεi)2 (30)

≤
βελmin(P−1/2Q̄ P−1/2)

2
(31)

are satisfied, then the overall system state will converge to the robust
positively invariant set φ(ε) under Algorithm 1.

Proof. First, we show that for each subsystem i, xi(t), xi(t) /∈

φi(εi) will enter into φi(εi) in finite time. The Lyapunov function
candidate is chosen as

Vi(t ri ) := Hi(x̂i(t; t ri ), ũ
∗

i (t; t
r
i )). (32)

Due to the stability constraint in (10g), we have Vi(t ri )−Vi(t r−1
i ) ≤

Hi(x̄i(t; t ri ), ūi(t; t ri )) − Hi(x̂i(t; t r−1
i ), ũ∗

i (t; t
r−1
i )).

According to (14) and (15), one obtains

Hi(x̄i(t; t ri ), ūi(t; t ri )) − Hi(x̂i(t; t r−1
i ), ũ∗

i (t; t
r−1
i ))

a + b + c, (33)

here a := −
∫ tri
tr−1
i

(∥x̂i(s; t r−1
i )∥2

Qi
+∥ũi(s; t r−1

i )∥2
Ri
)ds, b :=

∫ tr−1
i +T

tri

∥x̄i(s; t ri )∥
2
Qi

− ∥x̂i(s; t r−1
i )∥2

Qi
)ds, and c :=

∫ tri +T

tr−1
i +T

(∥x̄i(s; t ri )∥
2
Qi

+

ūi(s; t ri )∥
2
Ri
)ds + ∥x̄i(t ri + T ; t ri )∥

2
Pi

− ∥x̂i(t r−1
i + T ; t r−1

i )∥2
Pi
. For

∈ [t r−1
i , t ri ], one can obtain ∥xi(s) − x̂i(s; t r−1

i )∥Qi ≤ (1 −

i)εi according to (28). Since xi(t) /∈ φi(εi), then it follows that
x̂i(s; t r−1

i )∥Qi ≥ ∥x̂i(s; t r−1
i )∥Qi − ∥xi(s) − x̂i(s; t r−1

i )∥Qi ≥ αiεi.
herefore,

≤−

∫ tri

tr−1
i

(∥x̂i(s; t r−1
i )∥2

Qi
)ds ≤−

λmin(Qi)
λmax(Pi)

∆i(αiεi)2. (34)

According to Paulavičius and Žilinskas (2006), there always
xist constants LQi and LPi such that ∥x∥2

Qi
− ∥y∥2

Qi
≤ LQi∥x − y∥Qi

nd ∥x∥2
− ∥y∥2

≤ L ∥x − y∥ for all x, y ∈ X , i ∈ M. Thus, b
Pi Pi Pi Pi i
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an be calculated as

≤

∫ tr−1
i +T

tri

LQi (∥x̄i(s; t
r
i ) − x̂i(s; t r−1

i )∥Qi )ds

≤
(29)

∫ tr−1
i +T

tri

λmax(Qi)
λmin(Pi)

LQi (εi − αiεi)eLfi (s−tr−1
i −T )ds

≤
LQiλmax(Qi)
Lfiλmin(Pi)

(εi − αiεi)(1 − eLfi (∆i−T )). (35)

Considering Lemma 1, it follows that

c ≤∥x̄i(t r−1
i + T ; t ri )∥

2
Pi − ∥x̄i(t ri + T ; t ri )∥

2
Pi

− ∥x̄i(t ri + T ; t ri )∥
2
Pi − ∥x̂i(t r−1

i + T ; t r−1
i )∥2

Pi

≤
(29)(1 − α2

i )ε
2
i . (36)

Combining (34), (35) and (36), we obtain

Vi(t ri ) − Vi(t r−1
i )

≤ −
λmin(Qi)
λmax(Pi)

∆i(αiεi)2 + LPi (εi − αiεi)

+
LQiλmax(Qi)
Lfiλmin(Pi)

(εi − αiεi)(1 − eLfi (∆i−T ))

<(30)0.

By using the same argument as the Theorem 1 in Chen and
Allgöwer (1998), the state x(t) /∈ φ(ε) will enter into φ(ε) in finite
time.

Second, we show that the overall system state will stay in
φ(ε) forever. From Lemma 2, the derivation of x(t)TPx(t) along
the system trajectory ẋ(t) = F (x(t), u(t)) + w(t) yields

V̇f (x(t))|ẋ(t)=F (x(t),Kx(t))+w(t)

≤ − ∥x(t)∥2
Q̄ (β −

2∥w(t)∥P

λmin(P−1/2Q̄ P−1/2)∥x(t)∥P
)

(31)0,

hich implies φ(ε) is a robust positive invariant set. This com-
pletes the proof.

Remark 5. Theorems 2–3 establish the sufficient conditions for
guaranteeing the recursive feasibility of the OCP and the stability
of the overall systems and also provide guidance on control
parameter selection. In practical implementation, one can follow
the following steps to determine control parameters.

(i) Choose matrixes Qi, Ri, and Pi, i ∈ M and determine the
terminal set φi(εi) according to Lemmas 1 and 2.

(ii) Calculate ξi and θij based on system dynamics, and then
choose an appropriate αi to determine the predictive hori-
zon T and the minimum triggering interval ∆i according to
(24)–(26) and (30).

5. Simulation example

This section verifies the effectiveness of the proposed self-
triggered DMPC strategy by applying it to three similar cart-
spring–damper subsystems (Liu et al., 2014).

The dynamics of three subsystems are described as:

ẋ11(t) = x12(t)

ẋ12(t) = −
kd
m x12(t) −

ks
m e−x11(t)x11(t)

−
kc
m (x11(t) − x21(t)) +

1
mu1 + w1(t)

˙21(t) = x22(t)

˙ (t) = −
kd x (t) −

ks e−x21(t)x (t)
22 m 22 m 21

8

Fig. 2. The state trajectories of each cart.

−
kc
m (x21(t) − x11(t)) −

kc
m (x21(t)

− x31(t)) +
1
mu2 + w2(t)

˙31(t) = x32(t)

˙32(t) = −
kd
m x32(t) −

ks
m e−x31(t)x31(t)

−
kc
m (x31(t) − x21(t)) +

1
mu3 + w3(t)

here xi1 and xi2 are the displacement and the velocity of cart
(i = 1, 2, 3), respectively. m is the mass of each cart; kd and
s are the local viscous damping and the stiffness of the local
onlinear spring of each cart, respectively; kc is the stiffness of
he interconnecting spring; ui is control input; wi is external
isturbance. The numerical values for each cart are selected as:
= 1.25 kg, ks = 0.7 N/m, kd = 1.3 Ns/m, kc = 0.005 N/m.

he external disturbance wi = 0.0027, i = 1, 2, 3. The state
nd control input constraints are Xi = {xi : −1 m ≤ xi1 ≤

1 m,−1 m/s ≤ xi2 ≤ 1 m/s} and Ui = {ui : −1N ≤ ui ≤ 1N}.
he initial states of the three carts are x1(0) = [0.5, 0], x2(0) =

0.5, 0], and x3(0) = [−0.55, 0].
To conduct Algorithm 1, the sampling interval δi = 0.1s,

i = 1, 2, 3. The weighted matrices are simply set as Qi = Q̃i =[
0.2 0
0 0.2

]
, Ri = R̃i =

[
0.1 0
0 0.1

]
, i = 1, 2, 3. According to

Assumption 3, K1 = K3 = [−0.8752 −1.1245], K2 = [−0.8724 −

1.1230] can be calculated by LQR. In view of Lemmas 1 and 2, it

is obtained that P1 = P3 = P̃1 = P̃3 =

[
0.2915 0.1094
0.1094 0.1406

]
, P2 =

˜2 =

[
0.2911 0.1091
0.1091 0.1404

]
, and εi = 0.19, i = 1, 2, 3. Then, from

Assumption 2, Lfi = 2.5, i = 1, 2, 3. According to Theorems 1–3,
we can choose αi = 0.97 and the prediction horizon Ti = 0.7s,
i = 1, 2, 3.

The simulation results are shown in Figs. 2–5 . The state (dis-
placement, velocity) and control input of each cart are depicted
in Figs. 2–3, from which we can see that the closed-loop system
is stable and the state and control input constraints are satisfied.
The triggering instants of each cart under the conventional self-
triggered mechanism (Eqtami et al., 2013; Hashimoto et al., 2014;
Sun et al., 2019) and the proposed algorithm are shown in Figs. 4
and 5, respectively. The total number of triggering can represent
the consumption of the communication resources. It can be seen
that among 10 s, the total number of triggering are 12 in Fig. 4,
while 6 in Fig. 5, respectively. The average computation time of
conventional self-triggered mechanism and the proposed algo-
rithm are 2.0247 s and 1.8023 s, respectively. We can see that the
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D

D

E
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F

H
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Fig. 3. The control input trajectories of each cart.

Fig. 4. Triggering instants under the conventional self-triggered mechanism.

proposed algorithm can save communication and computation
resources more efficiently. To show the advantage of the pro-
posed strategy in control performance, we compare the control
performance of the proposed strategy with single nominal model
strategy and the periodic triggering strategy. Define the following
performance index

J =

3∑
i=1

∫ 10

0
(∥xi(t)∥2

Q̃i
+ ∥ui(t)∥2

R̃i
)dt

The value of J under the single nominal model strategy, the
proposed strategy, and the periodic one are 2.6393, 2.6391, and
2.6148, respectively. Clearly, the performance obtained with the
proposed strategy is better than the single nominal model strat-
egy, and is close to the periodic one. Note that the coupling
influences are weak, therefore the performance improvement is
not significant. The strong coupling between subsystems will be
further studied.

6. Conclusion

A rolling self-triggered DMPC strategy has been proposed for
large-scale dynamically coupled systems. By implementing this
strategy, the complexity of the DMPC algorithm design has been
9

Fig. 5. Triggering instants (blue line) and sampling instants (red line) under the
proposed algorithm. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

reduced while maintaining good control performance on the one
hand, and on the other hand, the communication burden has been
reduced significantly. We have established the sufficient condi-
tions for the recursive feasibility of the proposed algorithm and
the stability of the overall systems. Finally, simulation examples
have been conducted to validate the effectiveness.
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